Anisotropic materials are those that have varying thermal properties in different directions or orientations (i.e. in- vs through-plane). This can stem from the use of directional additives or simply be an inherent material property. While the degree of anisotropy can vary, any material that is not isotropic in nature (i.e. same in- vs through-plane) may require specialized testing considerations to obtain valid results. For thermal conductivity measurements of anisotropic materials, C-Therm recommends the use of either the Modified Transient Plane Source (MTPS) or FLEX Transient Plane Source (TPS) methods.
The MTPS offers the simplest and fastest option for testing anisotropic materials. Thanks to the method’s Guard Ring Technology™. MTPS measurements are always directionally dependent and measure in the direction normal to the sensor surface. As such, the direction of measurement is dependent on the orientation of the sample on the sensor surface.

Figure 1. Example of material directionality in the x,y and z-direction.
Based on the above, assuming the xy surface is in contact with the sensor than the direction of the measurement would be along the z-direction. Assuming sufficient size, the sample can be rotated, and measurements can be performed along with the different directions completely independently of one another. In scenarios where the sample size is limited multiple samples can be clamped together to accommodate the size requirements (see below).

Figure 2. Bars of polymer resin with a carbon-based additive demonstrating the “clamp/stack” method for in- and through-plane measurements.
In this example the through-plane measurement was easily performed on a single sample. However, due to the limitation of sample thickness for the in-plane measurement multiple samples were stacked together. Result obtained from this measurement can be seen in the table below.
|
Through-plane |
In-plane |
Thermal Conductivity (W/mK) |
1.32 |
2.59 |
Table 1. Measurement results using the MTPS method on an anisotropic sample.