Natural rubber nanocomposites reinforced with nanostructured carbon-based materials: Investigation of their mechanical and thermal properties

Abstract: Creating effective thermally conductive rubber nanocomposites for heat management is a challenging task for various modern technologies, from electronic devices to the tire industry. This study focused on the thermal and mechanical properties of natural rubber nanocomposites filled with carbon-based fillers, including carbon black, carbon nanotubes, reduced graphene oxide (RGO), and graphene nanoplatelets. Due to the poor thermal conductivity of rubber materials, high loadings of various thermally conductive fillers are required. However, this significantly impacts the final materials' mechanical behavior, limiting their application. In this challenging scenario, we aimed to enhance the thermal conductivity and mechanical properties (including tensile properties, hardness, dynamic mechanical properties, etc.) of rubber-based nanocomposites by exploiting hybrid carbon-based filler systems and suitable filler surface modification to improve the formation of continuous filler's network through the natural rubber (NR) matrix. The first part of the thesis (chapter 2) describes the effect of adding RGO to the natural rubber's thermal conductivity and mechanical properties. RGO was first synthesized using an improved Hummer method. Then, RGO pre-dispersed in natural rubber latex using the co-coagulation technique was added to a reference formulation in various contents (0-2 parts per hundred rubber (phr)), and compounded using an internal mixer. It was observed that the crosslink density of the developed natural rubber/RGO nanocomposites increased by 65% for RGO concentration of 2 phr. A significant increase in tensile strength (53%) and Young's modulus (31%) was observed for the same RGO concentration. Ultimately, the addition of only 0.5 phr of RGO resulted in a considerable improvement (26%) in thermal conductivity. In the second part of the thesis (chapter 3), the effect of the carbon black/multiwall carbon nanotubes (MWCNT) hybrid filler system on the mechanical properties and thermal conductivity of the nanocomposites was studied. Because of the shape difference between carbon black and MWCNT and the adsorption of curing agents onto the MWCNT, the scorch time (t₁₀) and optimum curing time (t₉₀) gradually increased with increasing MWCNT content. Finally, by substituting 5 phr of carbon black with MWCNT, significant improvements in thermal conductivity and mechanical properties were achieved due to the intrinsic properties of MWCNT and its synergy with carbon black. Moreover, the modulus at 100% and 300% strain (M@100 and M@300) increased by 72% and 54%, respectively. In the third part of the thesis (chapter 4), the surface modification of MWCNT was carried out to improve the dynamic mechanical behavior of the natural rubber/MWCNT nanocomposites to find an optimum fillers ratio having suitable mechanical and thermal properties. The results showed the positive effect of MWCNT surface oxidation on the fillers' dispersion and nanocomposites' properties. The last part (chapter 5) focused on the synergistic effect between carbon black and GNPs hybrid fillers with different surface areas and aspect ratios (GNPs-M25, GNPs-C300, and GNPs-C750). The results showed that the specific surface area of filler and its aspect ratio play a vital role in producing a conductive filler network. GNPs-M25 with a higher lateral dimension led to the highest consistency and denser conductive network inside the NR nanocomposite compared to GNPs-C300 and GNPs-C750. On the other hand, higher substitution increased the synergy of hybrid fillers, resulting in better filler dispersion and less energy dissipation.

Submit the form below to access the download: