Tech Library

Enhanced Thermal Conductivity of 5A Molecular Sieve with BNs Segregated Structures

5A molecular sieves have been widely used as adsorbents in cryogenic distillation for hydrogen isotope separation in fusion reactor engineering, but its low thermal conductivity is detrimental to the process stability. Improving the thermal conductivity of 5A molecular sieves is one of the most important goals for high-performance devices. Here, firm segregated structures with boron nitride sheets (BNs) are constructed around 5A molecular sieve particles. SEM results show 30 μm BNs tend to form the better networks in comparison with that of 0.12 μm BNs at 40 wt% loadings. It is further verified that BNs with the larger size promote the thermal conductivity. Meanwhile, the thermal conductivity increases with the increasing amounts of BNs. XRD and specific surface area results indicate that the sintering and the addition of BNs exert negligible effects on the structure of 5A molecular sieve. These results indirectly show 5A molecular sieve with BNs segregated structures is very likely to be used for the application of hydrogen isotopic separation. Besides, this work provides new insight into the construction of segregated structure in inorganic porous materials.

This paper highlights application of the C-Therm TCi Thermal Conductivity Analyzer.


Before downloading the file, we request that you send us your contact information. Upon completion of the form you will be prompted to download the file.